

- write its letter beside the item number.
 - The centre of gravity G of a body can be defined as
 - the centre of attraction of the earth

 - the point through which the resultant of the weights of all the particles of the body B C
 - the point through which the line of symmetry of a body passes D
 - the geometrical centre of the body.
 - If a body of mass 4.5 kg falls freely from rest for 2.0 seconds before it strikes the round, (ii) the maximum kinetic energy it will gain is
 - 900 J
 - B 864.4 J
 - 1000 J C
 - 450 J D
 - 746 J. E
 - The property of a material to recover its original shape and size on removal of a distorting (iii) force is called
 - elasticity
 - plasticity B
 - Hooke's law C
 - cohessivity D
 - Young's Modulus.
 - If the velocity of sound in a solid is 1.4 km/s, the sound wave of frequency 700 Hz has a (iv) wave length of
 - 2.0 m
 - B 0.2 m
 - 0.2 km C
 - D 2.0 km
 - 3.4 m. E
 - The density of most liquids decreases with increasing temperatures because their volumes (v)
 - increase while their masses decrease
 - increase more than their masses B
 - increase while their masses remain constant
 - D decrease while their masses remain constant
 - increase while their masses increase.
 - The heat capacity of a body is defined as (vi)
 - heat required to raise the temperature of a unit mass of the body
 - heat required to raise the temperature of the body by 1° K
 - heat required to raise the temperature of a unit mass of the body by 100° C or 373° K quantity of heat required to raise the temperature of the body from 0° C to 100° C D
 - quantity of heat required to change it from liquid state to gaseous state.

0135

(i)

(x)

Ans

(a)

(b)

Ther

when

A met

the lin

A con

0135

- If the refractive index of water is $\frac{4}{3}$, the critical angle of water-air interface is (vii)
 - 48° 35'
 - 45°
 - 42° C
 - 36° 51' D
 - 51° 42'.
- An instrument which consists of a solenoid wound around a soft iron core whose magnetism (viii) disappears when the current is switched off is called
 - an electromagnet
 - B an electric bell
 - a magnetic relay C
 - à solenoid D
 - a generator.
- The area under a velocity time graph represents (ix)
 - acceleration
 - displacement B
 - distance C
 - velocity D
 - time.
- A wheel and axle of efficiency 75 % is used to raise a load of 1500 N. If the radius of the wheel is 40 cm and that of the axle is 4 cm, the effort required to overcome the load is (x)
 - 150 N
 - 200 N B
 - 2000 N C
 - 300 N D
 - 600.5 N.

SECTION B (30 marks)

Answer ALL questions in this section. All workings for each question must be shown clearly.

- Define power. 2. (a)
 - Calculate the power of a pump which can lift 200 kg of water through a height of 6 metres in (b) 10 seconds.
- The mass of a piece of cork of density 0.25 g/c.c. is 20 g. What fraction of the cork is immersed 3. when it floats in water?
- A metal rod has a length of 100 cm at 200° C. At what temperature will its length be 100.6 cm if the linear expansion of the metal rod is 2×10^{-5} per Kelvin? 4.
- A convex mirror of focal length 18 cm produces an image in its axis 6 cm away from the mirror. Use new cartesian method to calculate the position of the object. 5.

- Define
 - angular motion (a)
 - acceleration (b)
 - elastic limit. (c)
- Two telegraph poles A and B at the side of a railway track are 50 m apart. A train which has a uniform acceleration passes pole A at a speed of 72 km/h and passes pole B 2 seconds later. Find the acceleration of the train.
 - Find the current taken and the resistance of the filament of a lamp rated at 240 V, 60 W.
 - Define echo as applied in the reflection of sound.
 - Mention three factors which affect the velocity of sound. (b)
 - What is meant by neutral point in a magnetic field? 10. (a)
 - Why is repulsion the only sure test for polarity of a magnet? (b)
 - How long will it take to liberate 1.10 g of copper by electrolysis using a current of a 0.5 A? 11 (e.c.e. of copper = 0.00033 g/c)

(60 marks) SECTION C

Answer THREE (3) questions from this section.

- A belt-driven pulley has a diameter of 500 mm and its speed is 300 rev/min. The tensions in the two sides of the belt are 1800 N and 400 N respectively. Calculate the power 12. (a)
 - In a hydraulic press, the radius of a big piston is 8 cm while that of a small piston is 2 cm, (b) Calculate the velocity ratio of the press.
- A mass of 40 g of aluminium is heated to 200° C and then quickly immersed in 160 g of water contained in a copper vessel having a mass of 24 g, the initial temperature of the water being 13. 12° C. If the final temperature of the water is 21.8° C, calculate the specific heat capacity of aluminium. Assume the specific heat capacity of copper and water to be 390 J/kg 4200 J/kg °C respectively and the loss of heat to be negligible.
- A moving coil instrument gives full deflection with 15 mA and has a resistance of 5 Ω . 14. Calculate the resistance required
 - in parallel to enable the instrument to read up to 1 A
 - in series to enable it to read up to 10 V.
- A body which moves from rest with uniform acceleration travels 18 m during the third second. What will its velocity be at the end of the eighth second?
 - A wheel, initially at rest, is subjected to a constant angular acceleration of 2.0 rad/sec2 for 50 seconds. Calculate the angular velocity attained and the number of revolutions the wheel (b) makes in that time.
- A mild-steel rod 4 m long and 30 mm in diameter, carries a tensile force of 100 kN. Calculate the extension, assuming Young's Modulus (E) = $200 \times 10^9 \text{ N/m}^2$.